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Hello everyone. My name is Jin Kim from Yonsei University. Today, I’m going to talk about  ‘Pin the Memory: 
Learning to Generalize Semantic Segmentation.’
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DOMAIN GENERALIZATION
Train Test

Most approaches are trained under the assumption that training and testing data are sampled from the same distribution.
However they often fail to infer accurate predictions for arbitrary target domain dataset because of the domain shift.

?



[1] Pan et al. "Two at once: Enhancing learning and generalization capacities via ibn-net.“ ECCV’18.
[2] Choi et al. "Robustnet: Improving domain generalization in urban-scene segmentation via instance selective whitening.“ CVPR’21.
[3] Yue et al. "Domain randomization and pyramid consistency: Simulation-to-real generalization without accessing target domain data." CVPR’19.
[4] Huang et al. "Fsdr: Frequency space domain randomization for domain generalization." CVPR’21.
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PREVIOUS DG METHODS [1]

Normalization Based

[2]

[3]

Randomization Based

[4]

To overcome this problem, Some DG methods heuristically define domain-biased information as style and erase. Other methods 
explicitly augment the style information.
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SEMANTIC MEMORY

Despite their efforts, the existing method is still different from the human method that leverage semantic memory.

General knowledge 
and Concept Experienced events

Semantic Memory Episodic Memory

Human Long-term Memory
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• We propose a novel memory-guided meta-learning 
framework to capture and memorize co-occurrent
categorical knowledge across domains.

• To this end, we split source domain datasets into 
meta-training and meta-testing sets to explicitly 
mimic domain shift, allowing the network to store 
and invoke memory corresponding to domain-
agnostic prototypes of class patterns.

• We introduce a memory divergence loss and a 
feature cohesion loss which boost discriminative 
power of memory and make more domain-invariant 
representations, respectively.

In this work, we propose a novel memory-guided meta-learning framework to capture and memorize co-occurrent categorical 
knowledge across domains.
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OVERALL PROCEDURE

The overall training procedure is as follows. As preliminary step, we initialize our memory module with mean feature vector for each 
class in the source datasets.
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OVERALL PROCEDURE

Then, we randomly split the available source domains S into meta-train domains Smtr and meta-test domains Smte at every iteration 
step. Note that the meta-train mimic the training, and the meta-test mimic the inference.
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OVERALL PROCEDURE

Categorical memory module

Encoder

Decoder

Memory updating network

Our memory stores domain-agnostic prototype vectors for each class. Memory update and read operate on the feature map from the 
encoder.
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OVERALL PROCEDURE

Categorical memory module

Encoder

Decoder

Memory updating network

We update the memory by performing an masked average pooling for each class.
We read the memory by computing a memory weight matrix via cosine similarity and normalize it with the gumbel softmax function.
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OVERALL PROCEDURE

Categorical memory module

Encoder

Decoder

Memory updating network

Then, the memory-guided feature map R is obtained by fusing the original feature map F and weighted memory feature.
The 1 by 1 convolution is to match the channel dimension.
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OVERALL PROCEDURE

Every iteration consists of a meta training step and a meta testing step. The meta training steps are as follows. 
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OVERALL PROCEDURE

Given an input image Xmtr in Smtr domain, the encoder computes a feature map and augments it by using the memory M through the 
reading operation. We calculate a per-pixel cross-entropy loss, Lseg.

Read Loss Memory update loss
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OVERALL PROCEDURE

We also calculate a feature cohesion loss Lcoh to encourage semantic features to be locally assembled based on each memory item and 
a memory divergence loss Ldiv to increase the distance between memory items, as well as maximizes the decision margin.

Read Loss Memory update loss
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OVERALL PROCEDURE

Note that we calculate the reading loss before memory update so that the segmentation mask information does not affect the 
segmentation loss. Consequently, the updated network parameters are obtained. We denote these parameters with prime.
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OVERALL PROCEDURE

We perform meta testing step using the temporarily updated network parameters in the meta training step.
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OVERALL PROCEDURE

The goal of meta-testing in our method is to not only virtually simulate testing the networks on new data statistics but also characterize 
learning to update categorical memory to work well across the domains.
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OVERALL PROCEDURE

However in the true inference time, we will just reuse the trained memory without updating memory.
So we obtain the memory once again with meta-train data, not meta-test data.

Inference
time

Memory (fix)

Training
time
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OVERALL PROCEDURE

Second 
gradient 

flow

Lastly, Guided by updated memory Mʹ, the network parameters are updated with the reading loss for the image Xmte from meta-test 
domain Smte.
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OVERALL PROCEDURE

Second 
gradient 

flow

Since this memory Mʹ is used to segment meta-test data Xmte, this novel step allows the memory updating network’s parameters ΘU 
to receive the second-order gradient feedback on whether the updated memory Mʹ is applicable on different domains. 
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OVERALL PROCEDURE

Second 
gradient 

flow

Also, the effectiveness of the memory divergence loss for the updating network U can be tested within the meta-testing process
And by freezing the encoder’s parameter Θʹ E, we can avoid unstable meta-learning caused by the asynchronous gradient update 
between the encoder and the other networks.
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OVERALL PROCEDURE

Finally, Using the second order optimized network parameters, we initialize the memory M∗ that will be used in the next training 
iteration step.
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SEMANTIC SEGMENTATION DATASETS
• Synthetic

Synthia (S) : 9k images with different weather and illumination conditions from multiple viewpoints.
GTAV (G) : 25k driving scene image dataset.

• Real
Cityscapes (C) : 3,450 finely-annotated images collected from 50 different citiess, primarily Germany.
BDD100K (B) : 8K diverse urban driving scene images collected from various locations in the US.
Mapillary (M) : street-view dataset including 25K images collected from all around the world.
IDD (I) : 10,004 images captured from Indian roads which are significantly different from the existing 
datasets mainly collected in Europe or US. (we used this as source dataset)

NETWORK ARCHITECTURE
• DeepLab V3+ with ResNet50, DeepLab V2 with ResNet101

EVALUATION PROTOCOLS
• Single-Source DG : G à C, B, M • Multi-Source DG :  1. G + S à C, B, M 2. G + S + I à C, B, M

We conduct the experiments on six different datasets to prove the generalization ability of our method.
Synthia and gta5 datasets are synthetic datasets, and the rest are real datasets.
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SEMANTIC SEGMENTATION DATASETS
• Synthetic

Synthia (S) : 9k images with different weather and illumination conditions from multiple viewpoints.
GTAV (G) : 25k driving scene image dataset.

• Real
Cityscapes (C) : 3,450 finely-annotated images collected from 50 different citiess, primarily Germany.
BDD100K (B) : 8K diverse urban driving scene images collected from various locations in the US.
Mapillary (M) : street-view dataset including 25K images collected from all around the world.
IDD (I) : 10,004 images captured from Indian roads which are significantly different from the existing 
datasets mainly collected in Europe or US. (we used this as source dataset)

NETWORK ARCHITECTURE
• DeepLab V3+ with ResNet50, DeepLab V2 with ResNet101

EVALUATION PROTOCOLS
• Single-Source DG : G à C, B, M • Multi-Source DG :  1. G + S à C, B, M 2. G + S + I à C, B, M

We measured the domain generalization performance by setting the training and testing datasets differently.
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MULTI-SOURCE DG ON SEMANTIC SEGMENTATION

This is Mean IoU(%) and per-class IoU(%) comparison table of other SOTA DG methods for semantic segmentation. Source domains 
were gta5 and synthia. Our approach consistently outperformed the other models by a large margin on all real-world datasets.
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MULTI-SOURCE DG ON SEMANTIC SEGMENTATION

Even when three source domains was used, our model achieved SOTA.
Also, compared to UDA methods using target domain information, comparable performance was achieved.
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SINGLE-SOURCE DG ON SEMANTIC SEGMENTATION

Although it did not come out well for all domains in the single source DG setting, we confirmed that our method gave comparable 
performance.



Q&A

THANK YOU!
MORE DETAILS AND EXPERIMENTS CAN BE FOUND ON

HTTPS://ARXIV.ORG/ABS/2204.03609

Thank you for listening.
Please find more details and experimental results on our main paper.


