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Hello everyone. My name is Jin Kim from Yonsei University. Today, I’'m going to talk about ‘Pin the Memory:

Learning to Generalize Semantic Segmentation. =
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Most approaches are trained under the assumption that training and testing data are sampled from the same distribution.
However they often fail to infer accurate predictions for arbitrary target domain dataset because of the domain shift. 2
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[1] Pan et al. "Two at onc'é!?nﬂmah atlon ngase Randomlzatlon Based

ancing arnlng and generalization capacities via ibn-net.” ECCV’18.
[2] Choi et al. "Robustnet: Improving domain generalization in urban-scene segmentation via instance selective whitening.” CVPR’21.

[3] Yue et al. "Domain randomization and pyramid consistency: Simulation-to-real generalization without accessing target domain data." CVPR’19.

[4] Huang et al. "Fsdr: Frequency space domain randomizatjon for domain generalization." CVPR’21.
To overcome this problem, Some DG methods heuristically define domain-biased information as style and erase. Other methods

explicitly augment the style information.
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SEMANTIC MEMORY
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Despite their efforts, the existing method is still different from the human method that leverage semantic memory.
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We propose a novel memory-guided meta-learning
framework to capture and memorize co-occurrent
categorical knowledge across domains.

To this end, we split source domain datasets into
meta-training and meta-testing sets to explicitly
mimic domain shift, allowing the network to store
and invoke memory corresponding to domain-
agnostic prototypes of class patterns.

We introduce a memory divergence loss and a
feature cohesion loss which boost discriminative
power of memory and make more domain-invariant
representations, respectively.

In this work, we propose a novel memory-guided meta-learning framework to capture and memorize co-occurrent categorical
knowledge across domains.



METHOD
OVERALL PROCEDURE

Algorithm 1: Overall Training Procedure
~— Source Domain‘. = Initialize {O©}r,u,p,c and M att =0
Smer while t < T do

Randomly split S into Sy and Spe

Domain Split

The overall training procedure is as follows. As preliminary step, we initialize our memory module with mean feature vector for each
class in the source datasets.
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OVERALL PROCEDURE

Algorithm 1: Overall Training Procedure
~— Source Domain‘. == Initialize {O©}r,u,p,c and M att =0
Smer, while t < T do

Randomly split S into Sy and Spe

Domain Split

Then, we randomly split the available source domains S into meta-train domains Smtr and meta-test domains Smte at every iteration
step. Note that the meta-train mimic the training, and the meta-test mimic the inference.
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(b) Memory Read

Our memory stores domain-agnostic prototype vectors for each class. Memory update and read operate on the feature map from the

encoder.
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(b) Memory Read

We update the memory by performing an masked average pooling for each class.

Memory-guided
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We read the memory by computing a memory weight matrix via cosine similarity and normalize it with the gumbel softmax function.
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(b) Memory Read

Then, the memory-guided feature map R is obtained by fusing the original feature map F and weighted memory feature.

The 1 by 1 convolution is to match the channel dimension.
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Algorithm 1: Overall Training Procedure

O
Meta-training

- —

Meta-training:
Sample batch X, = {X2,. ., from Spe
Compute Lread With (X, M, {©} £,D)
M < update(M, X {O}E,v)
Compute Lypgae With (M, Oc)
Update {©}% 7. p,Og from {©} g v p,¢ in (9)

Every iteration consists of a meta training step and a meta testing step. The meta training steps are as follows.
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Algorithm 1: Overall Training Procedure
Memory Update & Read—————————— — —
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Read Loss Memory update loss
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Given an input image Xmtr in Smtr domain, the encoder computes a feature map and augments it by using the memory M through the
reading operation. We calculate a per-pixel cross-entropy loss, Lseg.

12
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Algorithm 1: Overall Training Procedure
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We also calculate a feature cohesion loss Lcoh to encourage semantic features to be locally assembled based on each memory item and
a memory divergence loss Ldiv to increase the distance between memory items, as well as maximizes the decision margin. 13
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Algorithm 1: Overall Training Procedure
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Note that we calculate the reading loss before memory update so that the segmentation mask information does not affect the
segmentation loss. Consequently, the updated network parameters are obtained. We denote these parameters with prime.
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Algorithm 1: Overall Training Procedure

Meta-testing:
M’ < update(M, X.; copy(O%), OF)
Sample batch X} = {X[ﬁte} B | from Sme
Compute Lreaq With (Xge, M', {O}5 p)
Update {©}% 7. p from {©}% 7 p in (11)

We perform meta testing step using the temporarily updated network parameters in the meta training step.
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Algorithm 1: Overall Training Procedure
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Meta-testing:
M’ < update(M, X.; copy(O%), OF)
Sample batch X = {2}, from Sme
Compute Lreaq With (Xge, M', {O}5 p)
Update {©}% 7. p from {©}% 7 p in (11)

Meta-testing

The goal of meta-testing in our method is to not only virtually simulate testing the networks on new data statistics but also characterize
learning to update categorical memory to work well across the domains. 16
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Algorithm 1: Overall Training Procedure
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However in the true inference time, we will just reuse the trained memory without updating memory.
So we obtain the memory once again with meta-train data, not meta-test data.

17



METHOD

OVERALL PROCEDURE

Algorithm 1: Overall Training Procedure
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Lastly, Guided by updated memory M’, the network parameters are updated with the reading loss for the image Xmte from meta-test
domain Smte. 18
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Algorithm 1: Overall Training Procedure
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Since this memory M’ is used to segment meta-test data Xmte, this novel step allows the memory updating network’s parameters QU
to receive the second-order gradient feedback on whether the updated memory M’ is applicable on different domains. 19
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Also, the effectiveness of the memory divergence loss for the updating network U can be tested within the meta-testing process
And by freezing the encoder’s parameter ©' E, we can avoid unstable meta-learning caused by the asynchronous gradient update

between the encoder and the other networks.
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M | Memory Update to (t+1)-th iteration with {0} ; | E i M) Algorithm 1: Overall Training Procedure

| Memory Update & Read ~ Virtual Testing Memory Update & Read

| M« update(M, Xy, ; copy({6} 5. 1/))

{©}e,u,D,c + {9}*E,U,D,G
M — M*
t+—t+1

Finally, Using the second order optimized network parameters, we initialize the memory Mx* that will be used in the next training
iteration step. 21



EXPERIMENTS

SEMANTIC SEGMENTATION DATASETS

* Synthetic

Synthia (S) : 9k images with different weather and illumination conditions from multiple viewpoints.
GTAV (G) : 25k driving scene image dataset.

* Real

Cityscapes (C) : 3,450 finely-annotated images collected from 50 different citiess, primarily Germany.
BDD100K (B) : 8K diverse urban driving scene images collected from various locations in the US.
Mapillary (M) : street-view dataset including 25K images collected from all around the world.

IDD (l) : 10,004 images captured from Indian roads which are significantly different from the existing
datasets mainly collected in Europe or US. (we used this as source dataset)

NETWORK ARCHITECTURE
 Deeplab V3+ with ResNet50, DeeplLab V2 with ResNet101

EVALUATION PROTOCOLS
* Single-Source DG:G > C,B, M e Multi-SourceDG: 1.G+S>C,BM 2.G+S+1=>C,BM

We conduct the experiments on six different datasets to prove the generalization ability of our method.
Synthia and gta5 datasets are synthetic datasets, and the rest are real datasets. 22



EXPERIMENTS

SEMANTIC SEGMENTATION DATASETS

* Synthetic

Synthia (S) : 9k images with different weather and illumination conditions from multiple viewpoints.
GTAV (G) : 25k driving scene image dataset.

* Real

Cityscapes (C) : 3,450 finely-annotated images collected from 50 different citiess, primarily Germany.
BDD100K (B) : 8K diverse urban driving scene images collected from various locations in the US.
Mapillary (M) : street-view dataset including 25K images collected from all around the world.

IDD (l) : 10,004 images captured from Indian roads which are significantly different from the existing
datasets mainly collected in Europe or US. (we used this as source dataset)

NETWORK ARCHITECTURE
 Deeplab V3+ with ResNet50, DeeplLab V2 with ResNet101

EVALUATION PROTOCOLS
* Single-Source DG:G > C,B, M e Multi-SourceDG: 1.G+S>C,BM 2.G+S+1=>C,BM

We measured the domain generalization performance by setting the training and testing datasets differently.
23



EXPERIMENTS

MULTI-SOURCE DG ON SEMANTIC SEGMENTATION

— en 'S 5)
S £ = g = g S 3
3 £ 2 5 8 2% % % E . 2 35 . % 5 8 % %
Methods e % 22 =z & & T X g2 83 % & & 8 B B E £ 3 | moU%)
Baseline' 727 364 649 119 28 31.0 37.7 20.0 849 140 719 653 99 847 11.6 254 0.0 10.6 18.1] 35.46

IBN-Net! [47] | 68.3 29.5 69.7 174 1.8 30.7 362 202 854 182 81.8 647 129 827 13.0 162 0.0 82 222| 35.55(0.1)
RobustNet' [14]| 82.6 40.1 73.4 174 14 342 386 185 849 169 819 652 114 847 72 23.6 0.0 104 239 37.69 (2.2
Baseline 49.1 28.0 69.8 21.1 122 21.5 39.3 13.0 81.8 33.7 68.7 66.0 182 38.1 20.7 156 3.6 164 184  33.42
MLDG* [36] | 75.8 37.4 78.1 27.6 85 37.4 31.6 187 840 162 702 66.3 16.7 74.0 20.4 384 0.0 20.4 16.1| 38.84 (5.4)
Ours 85.3 45.3 82.5 263 19.9 349 39.0 24.0 85.8 24.0 82.8 64.7 21.3 85.7 32.0 38.2 6.7 26.0 21.5 44.51 (11.1)
Baseline® 446 26.1 347 1.8 69 295 39.1 205 649 108 51.6 50.6 102 639 1.1 48 00 55 10.1] 25.09

IBN-Net! [47] | 53.8 25.0 55.4 2.8 148 329 39.7 263 71.7 164 859 574 17.5 569 53 6.0 0.0 18.5 25.4| 32.18(7.1)

Cityscapes

é RobustNet' [14]| 69.5 35.0 60.9 4.1 13.1 36.6 40.5 27.3 71.6 14.0 83.6 56.0 17.3 619 44 88 0.0 243 18.9| 34.09 (9.0)

~ Baseline 545 26.0 440 34 209 30.1 374 159 65.7 227 423 509 14.7 58.0 17.5 141 0.0 25.0 94 | 29.07

g MLDG* [36] 54.0 334 610 6.4 253 355 355 19.0 71.5 20.0 75.8 53.7 134 462 73 344 00 95 53| 31.95(2.9)
Ours 79.3 39.1 69.0 6.2 32.8 32.1 36.7 269 713 259 863 494 125 75.2 20.6 31.6 0.0 17.9 10.7| 38.07 (9.0)
Baseline' 62.0 363 325 95 7.7 299 405 225 78.6 40.9 610 594 64 783 5.1 51 0.1 90 21.8| 31.94
IBN-Net' [47] | 67.4 38.8 51.3 102 7.6 36.0 40.1 40.8 80.3 39.9 92.1 61.8 14.0 744 10.7 94 3.5 153 25.4| 38.09(6.2)

E RobustNet' [14]| 78.0 41.0 56.6 13.1 6.2 394 41.3 36.1 79.5 34.7 90.0 61.0 12.0 76.1 10.7 13.1 0.8 16.9 24.8| 38.49 (6.6)

‘s, Baseline 534 259 447 11.1 190 284 36.2 158 713 27.1 66.1 58.6 11.7 642 20.1 1.1 11.4 23.1 22.3| 32.19

§ MLDG* [30] 69.4 36.0 58.6 194 168 37.6 31.3 288 76.7 36.9 81.6 434 155 59.1 214 8.1 1.3 16.8 17.9] 35.60 (3.7)
Ours 78.0 40.8 71.1 14.6 27.0 342 40.7 50.3 77.1 26.2 90.0 63.1 24.0 81.6 30.5 15.5 53 18.7 22.7| 42.70 (10.5)

Table 1. Source (G+S)— Target (C, B, M): Mean loU(%) and per-class IoU(%) comparison of other SOTA DG methods for semantic
segmentation. We report the mIoU improvement as red text. The networks are DeepLabV 3+ with ResNet50 and results with T are from [14].

This is Mean loU(%) and per-class loU(%) comparison table of other SOTA DG methods for semantic segmentation. Source domains
were gta5 and synthia. Our approach consistently outperformed the other models by a large margin on all real-world datasets.



EXPERIMENTS

MULTI-SOURCE DG ON SEMANTIC SEGMENTATION

Methods Cityscapes | BDDIOOK | Mapillary | Avg.
Baseline 52.51 47.47 54.70 51.56
IBN-Net* [47] 54.39 48.91 56.06 53.12
RobustNet* [14] 54.70 49.00 56.90 53.53
MLDG?* [36] 54.76 48.52 55.94 53.07
TSMLDG? [65] 53.02 46.43 52.76 50.70
Ours 56.57 50.18 58.31 55.02

Methods w/Target | Cityscapes | BDDI100OK
Baseline X 40.0 37.4
CyCADA [25]T v 39.3 37.2
MDAN [70] v 36.0 29.4
MADAN [72] v 45.4 40.4
MADAN+ [71] v 48.5 42.7
CLSS [23] v 54.0 N/A
Ours X 494 45.5

Table 2. Source (G+S+I)—Target (C, B, M): Mean IoU(%) com- Table 4. Source (G+S)— Target (C, B): Mean loU(%) comparison
of other multi-source UDA methods. The segmentation models are
are trained with two synthetic (GTAV, Synthia) and one real (IDD) all DeepLabV2 with ResNet101. Results with T are from [71].

parison of other state-of-the-art DG methods, where all networks

datasets. All methods adopt DeepLabV3+ with ResNet50.

Even when three source domains was used, our model achieved SOTA.

Also, compared to UDA methods using target domain information, comparable performance was achieved.

25



EXPERIMENTS

SINGLE-SOURCE DG ON SEMANTIC SEGMENTATION

Backbone | Methods Seg. model | Cityscapes | BDDI0OK | Mapillary
Baseline 32.50 26.70 25.70
DRPC [64] FCN-8s 37.40 32.10 34.10
Baseline' 29.00 25.10 28.20
ResnetS0 IBN-Net' [47] 33.90 32.30 37.80
' RobustNet! [14] DeenLabV3+ 36.60 35.20 40.30
Baseline cepra 31.60 26.70 29.00
MLDG* [16] 36.70 32.10 32.20
Ours 41.00 34.60 37.40
FSDR [2%] 4475 39.66 40.87
Resnet 101 Ours DeepLabV2 44.90 3971 41.31

Table 12. Source (G)—Target (C, B, M): Mean loU(%) compar-
ison of other SOTA methods using various segmentation models
and backbones. MLDG [36] is re-implemented. Results with I are
from [14].

Although it did not come out well for all domains in the single source DG setting, we confirmed that our method gave comparable
performance.
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THANK YOU!

MORE DETAILS AND EXPERIMENTS CAN BE FOUND ON
HTTPS://ARXIV.ORG/ABS/2204.03609

Thank you for listening.
Please find more details and experimental results on our main paper.



